Protein Kinase Inhibitors as a Therapeutic Modality

ALEXANDER LEVITZKI*

Unit of Cellular Signaling, Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received March 28, 2003

ABSTRACT

Most of the signal transduction pathways are mediated by protein kinases regulating every aspect of cell function. Mutations which deregulate their expression or their function or both result in cancers. Therefore, protein kinase inhibitors have become the focus of development of new therapies for cancer. Almost all 120 protein tyrosine kinases are involved in signaling, whereas only a handful of Ser/Thr kinases are involved. Thus, most of the effort is directed toward the development of tyrosine phosphorylation inhibitors. The success of Gleevec in the treatment of chronic myeloid leukemia and of Iressa for lung cancer validates the approach.

I. Principles of Signal Transduction Therapy

Cancer cells differ from their normal counterparts in their mode of communication with their neighbors due to aberrations in their signaling network. The realization of aberrant signal transduction as the source of the transformed phenotype of cancer cells has generated mounting interest toward developing therapies targeting these aberrations.1,2 Cancer cells develop as a result of a series of mutations in their signaling pathways: (1) cells divide inappropriately with respect to their environmental context, (2) cells develop robust anti-apoptotic signals, avoiding stresses, and (3) cells develop molecular mechanisms to escape the immune system.

These cancer-specific signaling networks can, in principle, become their “Achilles heel”. Identification of these signaling pathways, has become the basis “signal transduction therapy”.2 Rather than using cytotoxic agents, one targets selectively signaling elements of the cancer cell.3 This approach is also applicable to other diseases in which signaling pathways drive the diseased cell.4 In the late 1980s, the most prominent signaling elements, identified as key drivers of the cancer cells, were protein tyrosine kinases (PTKs). Therefore, the first signal transduction inhibitors were tyrosine phosphorylation inhibitors (tyrosine kinases (PTKs)). Some tyrosphostins were particularly effective in early PTKs (Figure 1). Some believe that it is reasonable to target aberrant signaling as the source of the trans-differentiation pathway of cancer cells has generated mounting interest toward developing therapies targeting these aberrations.4 In the late 1980s, the most prominent signaling elements, identified as key drivers of the cancer cells, were protein tyrosine kinases (PTKs). Therefore, the first signal transduction inhibitors were tyrosine phosphorylation inhibitors (tyrosphostins). Some tyrosphostins were particularly effective in early stage CML (chronic myeloid leukemia), blockade of Bcr-Abl is sufficient to induce apoptosis and therefore lead to the full remission of patients.5,6 Similarly, the blockade of pre-B acute lymphoblastic leukemia by the Jak-2 inhibitor AG 490 clears the engrafted tumor from the experimental mouse.7 The form of therapy aimed at tempering with the signaling pathways of cancer cells was coined as “signal transduction therapy”.2,3,4 The agents, developed as signal transduction inhibitors, are small molecules, antibodies, proteins, double stranded RNA molecules, and viral (gene) therapy.

II. Protein Tyrosine Kinase Inhibitors Vis-à-Vis SER/THR Inhibitors

The genome project identifies ~520 protein kinases from which a few dozens are involved in signal transduction.16 PTKs were identified in the 1980s as major players in cancer and, as a result, chosen as therapeutic targets.17 EGFR (epidermal growth factor receptor),15 Bcr-Abl,7 PDGFR (platelet derived growth factor receptor),16 VEGFR (vascular endothelial growth factor receptor),19 and IGF-1R (insulin growth factor 1 receptor kinase)23 were targeted having established their involvement in various malignancies. Targeting PDGFR was also motivated because of its involvement in restenosis.20–22 A small group of serine/threonine kinases, cyclin dependent kinase (Cdk), Erks, Raf, and PDK/Akt, were identified as major players in cell proliferation, cell division, and anti-apoptotic signaling. These Ser/Thr kinases are downstream to PTKs (Figure 1). Some believe that it is reasonable to target the upstream PTK rather than the downstream Ser/Thr kinase. Shutting off the elevated activity of the overactive PTK will nullify all the elements whose activities become enhanced as a result of the enhanced activity of the PTK targeted. When other mechanisms contribute to the activation of the Ser/Thr kinase, it is reasonable to utilize a Ser/Thr kinase inhibitor. One notable example is PKB (protein kinase B). PKB is most important in the anti-apoptotic network, and its activity is highly elevated, especially in metastatic cancer. The elevated activity of PKB results from enhanced signaling of upstream PTKs combined with the deletion of PTEN (phosphatase and tensin homologue), its negative regulator (Figure 1).

III. Development of PTK Inhibitors

Early searches for PTK inhibitors identified natural compounds such as quercetin, genistein, erstatin, and lavendustin. These compounds were found to be highly promiscuous, inhibiting many protein kinases, which was not surprising to the research community in those days. It was then believed that it was impossible to generate selective small molecules targeting protein kinases. Emphasis was put on the conservation of the ATP binding
Protein Kinase Inhibitors as a Therapeutic Modality

Levitzki

IV. Current PTK Inhibitors—Where Do We Go Now?

The success of Gleevec/Glivec in treating early CML and gastrointestinal stromal tumors (GIST), as well as the moderate success of Iressa (ZD 1839), validate the approach. We still need to assess whether more scaffolds for the design of novel PTK inhibitors are needed. Iressa has only moderate success in treating lung cancer as a single agent and is ineffective when combined with CDDP. Thus, we need also to learn more about the role of EGFR in the various forms of lung cancer and determine which subclass of patients should be selected for the treatment. It is highly likely that signaling elements other than EGFR and Her-2 should be considered.

V. EGFR Family Kinase Inhibitors

The role of EGFR in many cancers has been appreciated early on and, therefore, was one of the first targets identified. Indeed, Iressa (ZD 1839)\(^{31,40}\) (Figure 3) is in the clinic for the treatment of nonsmall cell lung carcinoma, and the quinazoline AG 1478\(^{39}\) is in clinical development for the treatment of glioblastoma multiforme (GBM) in which the persistently active \(\Delta (2–7)\) EGFR is overexpressed.\(^{41,42}\) AG 1478 will be used in combination with CDDP, with which it synergizes to induce apoptosis in GBM in vitro and in vivo.\(^{42}\) Since heterodimer combinations of the four members of the Her family play a role in the oncogenic phenotype of many cancers, there have been attempts to generate inhibitors of both Her-1 and Her-2 like GW 2016 (Figure 3), which blocks both EGFR and Her-2 12nM.\(^{43}\)

VI. Irreversible EGFR Kinase Inhibitors

The covalent attachment of a selective inhibitor to the EGFR kinase domain abolishes completely the catalytic activity and, therefore, is believed to possess better clinical potential. Indeed, CI-1033 (Figure 5)\(^{44}\) is effective in preclinical in vivo experiments. CI-1033, however, is, quite toxic (unpublished), most probably due to the high chemical reactivity of the acryloyl group. To improve the profile of such compounds, one may have to reduce the toxicity of the compound at the active site. Furthermore, it is less reactive than the acryloyl moiety. The diminished chemical reactivity has a chance to reduce the toxicity of the compound, compared with CI-1033.

VII. From Tyrophostins to Gleevec

In the early 1990s, the Bcr-Abl kinase inhibitors, tyrophostins AG 1112, AG 1318,\(^{6}\) and AG 9577,\(^{45}\) (Figure 6), were shown
to induce the terminal differentiation of K562 cells, the purging of Ph+ cells, and synergies with the anti-Fas receptor antibody in order to induce their demise. These compounds were not developed for the clinic since it was not believed at that time that they have a commercial future because of the rarity of CML compared to other cancers. Druker and Lydon followed up these studies, utilizing the Ciba-Geigy (than Novartis) compound CGP 57148 (Figure 6). This compound,47 renamed STI 571/Gleevec/Glivec, became the first signal transduction inhibitor to show excellent efficacy in the clinic9,10 for early CML. The absence of severe side effects in these patients was unexpected in view of the strong inhibitory activity of the compounds toward c-Abl, PDGFR, and c-Kit. This is probably due to the ability of normal cells to sustain high levels of inhibition of these elements, whereas the CML cells’ survival depends on Bcr-Abl. Thus, the principle of the enhanced sensitivity of the cancer cell to an inhibitor, which targets the element whose signaling is enhanced,48 is validated in the clinic.

Gleevec is highly active on a subpopulation of gastrointestinal stromal tumor (GIST) patients.49 The patients who respond best to STI 571 express Kit receptors, which carry mutations in exon 11, converting the receptor to a persistently active kinase essential for the survival of the cancer cell.

FIGURE 2. Protein tyrosine kinase inhibitors. dDifferent core structures used by investigators in the field are shown.

VIII. ATP Mimics and Substrate Mimics

Currently, all PTK inhibitors in clinical development or heading toward the clinic are competitive inhibitors of ATP and noncompetitive vis-à-vis the substrate. Although substrate competitive inhibitors never made it to the clinic, they are likely to be less toxic than ATP-mimics, since they bind to domains at the kinase site that are less conserved than the ATP binding site and are therefore less likely to hit many other targets. Indeed, tyrphostins such as AG 490, which blocks Jak-2,8 and AG 556, which possesses antiinflammatory properties, have been shown to be highly nontoxic in vivo.50–53 A major concern with these compounds, voiced in the literature, is that they possess hydroxyl groups, which are metabolically unstable. Although DOPA, a catechol, is a success story, the current feeling is that one should aim at tyrphostins with diminished numbers of hydroxyl groups. This has been partially accomplished by developing substrate mimics in which the hydroxyls are replaced by “bioisosteres”.54 AG 538, which is a competitive inhibitor of the IGF1-R,55 was converted quite successfully to “bioisosteres”, retaining the substrate competitive nature of the compound54 (Figure 7), but losing some efficacy. When one examines the efficacy of the ATP-competitive inhibitors in cellular assays, it is observed that these nanomolar compounds act on cells in the micromolar concentration range, most
probably because they need to compete against millimolar concentrations of ATP. For example, quinazolines, which bind to the EGFR with Ki of a few nanomolar, inhibit EGFR autophosphorylation in intact cells at the micromolar concentrations. Similarly, PP1, which inhibits Src family kinases at 20–170 nM in cell-free assays, inhibit Src activity in cells in the range of 5–40 μM. Another issue is that the selectivities of newly developed compounds are tested only against a limited number of PTKs and Ser/Thr kinases. Many selective inhibitors are soon discovered to hit other kinases: PP1 is equipotent as a PDGFR kinase inhibitor, and Gleevec is as potent against PDGFR kinase and c-Kit. Substrate competitive inhibitors have the potential to be more selective since the domain outside the ATP binding site is less conserved and may offer more opportunities to design a selective...
inhibitor. Bi-substrate inhibitors, which compete for both ATP and substrate simultaneously may be inferior, in principle, to substrate mimics, since they still have to compete against high intracellular ATP levels.

IX. PTK Inhibitors Synergize with Pro-Apoptotic Agents

Transformed cells are more sensitive to stress signaling pathways and apoptotic signals as compared to their parental nonmalignant cells. Therefore, transformed cells are more sensitive to cytotoxic agents such as CDDP, other pro-apoptotic cytotoxic agents, and the pro-apoptotic ligand FasL (see for review). However, as the cancer progresses to a more advanced state, cells acquire an anti-apoptotic shield, masking the potentiated state of sensitivity. An interesting example is advanced GBM, where the truncated EGFR, Δ2-7 EGFR, is responsible for its resistance to chemotherapy and radiation therapy. Blockade of the Δ2-7 EGFR by the EGFR kinase inhibitor AG 1478 sensitizes the tumor to CDDP and enhances the survival of tumor bearing nude mice treated with the two agents.

X. PTK Inhibitors for the Treatment Restenosis, Psoriasis, and Papilloma

Restenosis, following balloon angioplasty, is largely driven by the stimulation of the PDGFR in the media of the manipulated blood vessel. Indeed, local application of the PDGFR kinase inhibitors AG 1295 and AGL 2043 (Banai et al., unpublished experiments), during balloon angioplasty, inhibits effectively restenosis. Enhanced activity of EGFR observed in psoriasis and Papilloma is due to the autocrinic stimulation of an EGFR, which is overexpressed. EGFR kinase inhibitors inhibit the growth of both psoriatic keratinocytes and keratinocytes, immortalized with HPV 16, and therefore can be considered as therapeutic agents.

XI. EGFR Kinase Inhibitors for Imaging

In principle, one can utilize radioactively labeled PTK inhibitors in order to image tumors, which overexpress the kinase and determine whether targeting a particular kinase is reasonable. A case in point is the decision whether to treat lung cancer with Iressa since not every lung cancer expresses these receptors. Reversible and irreversible labeled EGFR kinase inhibitors were recently developed for imaging EGFR overexpressing tumors. It was recently shown that the irreversible inhibitors are actually superior to the reversible ones.

XII. SER/THR Kinase Inhibitors

A handful of Ser/Thr kinases have been shown to be involved in signal transduction as we know it today (Figure 1). These transmit signals of upstream PTKs, and their activity is essential for cell proliferation and the onset of anti-apoptotic signaling (Figure 1). Their
abnormal enhanced activities are enhanced by the deletion of negative regulators, such as protein inhibitors of cyclin-dependent kinases (Cdks), like p16, and the deletion of the tumor suppressor PTEN (Figure 1). Thus, the activated activities of these kinases are driven by the synergistic action of the upstream PTKs, combined with the inactivation of the downstream negative regulators.

XIII. RAF and MEK Inhibitors

Inhibitors of the Ras-Raf-Mek-Erk pathway are of great potential since the activation of elements of this pathway is the hallmark of many cancers. For example, activating mutations in B-Raf occur in ~66% of human melanoma, suggesting that Raf kinase inhibitors such as BAY 43–9006 (Figure 8) and Mek inhibitors such as PD184352 may be useful. PD 184352 inhibits tumor growth in mice with colon carcinomas of both mouse and human origin. Raf, Mek, and Erk inhibitors can be extremely useful for the treatment of many cancers since their activities are highly enhanced due to the widespread oncogenic mutations in ras. Once activating mutations occur in the Ras-Raf-Mek pathway, the utilization of Ser-Thr inhibitors will be essential since the pathway will be independent of PTK activation.

XIV. Cyclin Dependent Kinase Inhibitors

Inhibitors of Cdks, especially Cdk2 and Cdk 4, are in clinical development for cancer.

Falvopiridol, for example, (Figure 8) inhibits Cdk4/ cyclin D and Cdk1/CyclinB1 and is currently in clinical trials.

XV. PKB/AKT Inhibitors

Progress toward the generation of PKB inhibitors (Aktstatins) has been recently reported. The PKA inhibitor H-89 was modified to reduce its affinity toward PKA and improve its affinity toward PKB/Akt.

XVI. PKC Inhibitors

Although PKC isoforms have been known for a long time, little progress has been made in the utilization of PKC inhibitors, but some PKC inhibitors are in development as anticancer agents and vascular retinopathy.

XVII. Rapamycin

Rapamycin, the inhibitor of mTor, is effective as an inhibitor of angiogenesis and therefore is a potential anticancer drug. Rapamycin is also effective in the inhibition of restenosis, when applied on coated stents.

Table 1 summarizes the current state of protein kinase inhibitors in the clinic.

XIII. Concluding Remarks

The success of Gleevec, in treating patients suffering from chronic myeloid leukemia, and of Iressa, in the treatment of a sub-population of lung cancer patients, demonstrates the paradigm shift taking place in cancer therapy. Since protein kinases, especially protein tyrosine kinases, play a role in every aspect of cellular function, their malfunction results in disease, often cancer. Thus, protein tyrosine phosphorylation inhibitors will occupy a decreasing fraction of anticancer agents of the future. It is quite clear that a few dozens of such inhibitors, covering most of the kinases involved in the various cancers, will make a huge difference in disease outcome in the coming future. Table 1 summarizes the current protein kinase inhibitors in the clinic and in development.

References

Protein Kinase Inhibitors as a Therapeutic Modality

Levitzki

(67) Ortu, G.; Ben David, I.; Rozen, Y.; Freedman, N. M.; Chisin, R.; Levitzki, A.; Mishani, E. In vitro and in vivo investigation of an irreversible labeled EGF receptor inhibitor (ML03) and its potential as PET biomarker in Cancer and feasibility as an anticancer drug. *Int. J. Cancer,* in press.

AR0201207